If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-9y-4=0
a = 5; b = -9; c = -4;
Δ = b2-4ac
Δ = -92-4·5·(-4)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{161}}{2*5}=\frac{9-\sqrt{161}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{161}}{2*5}=\frac{9+\sqrt{161}}{10} $
| (x^2-x-12)^4/3=16 | | 2(x+1.5)=4x | | 1-(x-2)=2x+2 | | -3m+6-5m-1)=-5m-(-2m-4)+5 | | 2(4x-1)=2x+2 | | (5v-7)(3+v)=0 | | 7x-3(x-1)1=2x | | -13y+2(6y+1)=20 | | x+(2x-1)+2(3-x)=(x-2)+(4x+1) | | 1.2=3n-1n | | 3c=-2.4 | | 6(x-1)-(5x-9)=-6 | | -5(6x+4)=-30x-20 | | 4y=(8)+16 | | -4z(z-6)(z+5)=0 | | 6x+5/4+1=5x/4 | | 4y=(6)+16 | | -5=s–3 | | (y+5)(y+9)=0 | | 2u-4=-8(u-7) | | 5-t=-47 | | |4w+5|=|4w+9| | | |4w+5=|4w+9| | | 4(w+4)-6w=32 | | 7x-3=45 | | 8y-38=-8(y+2 | | 7x+28=(x+4) | | 4y=(12)+16 | | 2.6x-1.2=5 | | 6t^2-21t-97=0 | | 4y=(16)+16 | | -6.75x=60.75 |